88 research outputs found

    The implications of “pay-for-performance” reimbursement for Otolaryngology – Head and Neck Surgery

    Get PDF
    Objective: To introduce otolaryngologists to outcomes-linked reimbursement ( pay-for-performance ), identify clinical practice implications and recommend changes for successful transition from the traditional pay-for-effort reimbursement model. Study design: Policy review Results: Payers are actively linking reimbursement to quality. Since the Institute of Medicine issued its report on medical errors in 1999, there has been much public and private concern over patient safety. In an effort to base health care payment on quality, pay-for-performance programs reward or penalize hospitals and physicians for their ability to maintain standards of care established by payers and regulatory groups. More than 100 such programs are operational in the United States today. This reimbursement model relies on detailed documentation in specific patient care areas to facilitate evaluation of outcomes for purposes of determining reimbursement. Since performance criteria for reimbursement have not yet been proposed within Otolaryngology-Head and Neck Surgery, otolaryngologists must be involved to ensure the adoption of reasonable goals and development of reasonable systems for documentation. Conclusion: Pay-for-performance reimbursement is increasingly common in the current era of outcomes-based medicine. It will assume an even greater role over the next 3 years and will directly affect most otolaryngologists

    BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes

    Get PDF
    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.We would like to acknowledge the support of the University of Cambridge, Cancer Research UK (CRUK), and Hutchison Whampoa Limited. Parts of this work were funded by CRUK core grants C14303/A17197 and A19274 and the Breast Cancer Research Foundation

    A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression

    Get PDF
    Genetic mapping studies have identified multiple cancer susceptibility regions at chromosome 8q24, upstream of the MYC oncogene. MYC has been widely presumed as the regulated target gene, but definitive evidence functionally linking these cancer regions with MYC has been difficult to obtain. Here we examined candidate functional variants of a haplotype block at 8q24 encompassing the two independent risk alleles for prostate and breast cancer, rs620861 and rs13281615. We used the mapping of DNase I hypersensitive sites as a tool to prioritise regions for further functional analysis. This approach identified rs378854, which is in complete linkage disequilibrium (LD) with rs620861, as a novel functional prostate cancer-specific genetic variant. We demonstrate that the risk allele (G) of rs378854 reduces binding of the transcription factor YY1 in vitro. This factor is known to repress global transcription in prostate cancer and is a candidate tumour suppressor. Additional experiments showed that the YY1 binding site is occupied in vivo in prostate cancer, but not breast cancer cells, consistent with the observed cancer-specific effects of this single nucleotide polymorphism (SNP). Using chromatin conformation capture (3C) experiments, we found that the region surrounding rs378854 interacts with the MYC and PVT1 promoters. Moreover, expression of the PVT1 oncogene in normal prostate tissue increased with the presence of the risk allele of rs378854, while expression of MYC was not affected. In conclusion, we identified a new functional prostate cancer risk variant at the 8q24 locus, rs378854 allele G, that reduces binding of the YY1 protein and is associated with increased expression of PVT1 located 0.5 Mb downstream.This work was funded by Cancer Research UK (http://www.cancerresearchuk.org/) and by the Intramural Research Program, Division of Cancer Epidemiology and Genetics and Centre for Cancer Research, National Cancer Institute, National Institutes of Health, United States of America (http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    A Study of D0 --> K0(S) K0(S) X Decay Channels

    Full text link
    Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D0D^0 mesons into final states containing more than one KS0K^0_S. We present evidence for two Cabibbo favored decay modes, D0KS0KS0Kπ+D^0\to K^0_SK^0_S K^- \pi^+ and D0KS0KS0K+πD^0\to K^0_SK^0_S K^+ \pi^-, and measure their combined branching fraction relative to D0Kˉ0π+πD^0\to \bar{K} ^0\pi^+\pi^- to be Γ(D0KS0KS0K±π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^{\pm}\pi^{\mp})}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0106 ±\pm 0.0019 ±\pm 0.0010. Further, we report new measurements of Γ(D0KS0KS0KS0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^0_S)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0179 ±\pm 0.0027 ±\pm 0.0026, Γ(D0K0Kˉ0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0\bar{K} ^0)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0144 ±\pm 0.0032 ±\pm 0.0016, and Γ(D0KS0KS0π+π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_S\pi^+\pi^-)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0208 ±\pm 0.0035 ±\pm 0.0021 where the first error is statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte

    Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer

    Get PDF
    BACKGOUND: Angiomotin is a newly discovered molecule that regulates the migration and tubule formation of endothelial cells. It therefore has been implicated in the control of angiogenesis under physiological and pathological conditions. This study examined the expression of angiomotin and its analogues, angiomotin-like 1 (L1) and -like 2 (L2) in breast tumour tissues, and analysed their correlation with angiogenesis and clinical outcomes. METHODS: Human breast tissues (normal n = 32 and tumours n = 120) were used. The levels of expression of angiomotin, L1 and L2 were determined using reverse transcription PCR. Microvessels were stained using antibodies against PECAM, von Willebrand factor (factor 8, or vWF) and VE-cadherin. The transcript levels of angiomotin and its analogues were assessed against the clinical and pathological background, including long term survival (120 months). RESULTS: Breast cancer tissues expressed significantly higher levels of angiomotin transcript, compared with normal mammary tissues (33.1 ± 11 in normal versus 86.5 ± 13.7 in tumour tissues, p = 0.003). Both L1 and L2 were seen at marginally higher levels in tumour than normal tissues but the difference was not statistically significant. Levels of angiomotin were at significantly higher levels in grade 2 and grade 3 tumours compared with grade 1 (p < 0.01 and p = 0.05 respectively). The levels of angiomotin in tumours from patients who had metastatic disease were also significantly higher than those patients who remained disease free (p = 0.03). Multivariate analysis indicated that angiomotin transcript was an independent prognostic factor (p = 0.031). No significant correlations were seen between angiomotin-L1 and L2 with the clinical outcome. Furthermore, high levels of angiomotin transcript were associated with shorter overall survival (p < 0.05). There was a high degree of correlation between levels of vW factor and that of angiomotin (p < 0.05), but not angiomotin-L1 and angiomotin-L2. CONCLUSION: Angiomotin, a putative endothelial motility factor, is highly expressed in human breast tumour tissues and linked to angiogenesis. It links to the aggressive nature of breast tumours and the long term survival of the patients. These data point angiomotin as being a potential therapeutic target

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Co-Inhibition of BCL-W and BCL2 Restores Antiestrogen Sensitivity through BECN1 and Promotes an Autophagy-Associated Necrosis

    Get PDF
    BCL2 family members affect cell fate decisions in breast cancer but the role of BCL-W (BCL2L2) is unknown. We now show the integrated roles of the antiapoptotic BCL-W and BCL2 in affecting responsiveness to the antiestrogen ICI 182,780 (ICI; Fulvestrant Faslodex), using both molecular (siRNA; shRNA) and pharmacologic (YC137) approaches in three breast cancer variants; MCF-7/LCC1 (ICI sensitive), MCF-7/LCC9 (ICI resistant), and LY2 (ICI resistant). YC137 inhibits BCL-W and BCL2 and restores ICI sensitivity in resistant cells. Co-inhibition of BCL-W and BCL2 is both necessary and sufficient to restore sensitivity to ICI, and explains mechanistically the action of YC137. These data implicate functional cooperation and/or redundancy in signaling between BCL-W and BCL2, and suggest that broad BCL2 family member inhibitors will have greater therapeutic value than targeting only individual proteins. Whereas ICI sensitive MCF-7/LCC1 cells undergo increased apoptosis in response to ICI following BCL-W±BCL2 co-inhibition, the consequent resensitization of resistant MCF-7/LCC9 and LY2 cells reflects increases in autophagy (LC3 cleavage; p62/SQSTM1 expression) and necrosis but not apoptosis or cell cycle arrest. Thus, de novo sensitive cells and resensitized resistant cells die through different mechanisms. Following BCL-W+BCL2 co-inhibition, suppression of functional autophagy by 3-methyladenine or BECN1 shRNA reduces ICI-induced necrosis but restores the ability of resistant cells to die through apoptosis. These data demonstrate the plasticity of cell fate mechanisms in breast cancer cells in the context of antiestrogen responsiveness. Restoration of ICI sensitivity in resistant cells appears to occur through an increase in autophagy-associated necrosis. BCL-W, BCL2, and BECN1 integrate important functions in determining antiestrogen responsiveness, and the presence of functional autophagy may influence the balance between apoptosis and necrosis

    Overexpression of FOXG1 contributes to TGF-β resistance through inhibition of p21WAF1/CIP1 expression in ovarian cancer

    Get PDF
    Background:Loss of growth inhibitory response to transforming growth factor-Β (TGF-Β) is a common feature of epithelial cancers. Recent studies have reported that genetic lesions and overexpression of oncoproteins in TGF-Β/Smads signalling cascade contribute to the TGF-Β resistance. Here, we showed that the overexpressed FOXG1 was involved in attenuating the anti-proliferative control of TGF-Β/Smads signalling in ovarian cancer.Methods:FOXG1 and p21 WAF1/CIP1 expressions were evaluated by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), western blot and immunohistochemical analyses. The effect of FOXG1 on p21 WAF1/CIP1 transcriptional activity was examined by luciferase reporter assays. Cell lines stably expressing or short hairpin RNA interference-mediated knockdown FOXG1 were established for studying the gain-or-loss functional effects of FOXG1. XTT cell proliferation assay was used to measure cell growth of ovarian cancer cells.Results:Quantitative RT-PCR and western blot analyses showed that FOXG1 was upregulated and inversely associated with the expression levels of p21 WAF1/CIP1 in ovarian cancer. The overexpression of FOXG1 was significantly correlated with high-grade ovarian cancer (P0.025). Immunohistochemical analysis on ovarian cancer tissue array was further evidenced that FOXG1 was highly expressed and significantly correlated with high-grade ovarian cancer (P0.048). Functionally, enforced expression of FOXG1 selectively blocked the TGF-Β-induced p21 WAF1/CIP1 expressions and increased cell proliferation in ovarian cancer cells. Conversely, FOXG1 knockdown resulted in a 20-26% decrease in cell proliferation together with 16-33% increase in p21 WAF1/CIP1 expression. Notably, FOXG1 was able to inhibit the p21 WAF1/CIP1 promoter activity in a p53-independent manner by transient reporter assays.ConclusionOur results suggest that FOXG1 acts as an oncoprotein inhibiting TGF-Β-mediated anti-proliferative responses in ovarian cancer cells through suppressing p21 WAF1/CIP1 transcription. © 2009 Cancer Research UK All rights reserved.published_or_final_versio
    corecore